
	

Continue

https://feedproxy.google.com/~r/skout/mBVl/~3/3CAf4wW3hvY/uplcv?utm_term=turing+machine+problems+and+solutions+pdf

Turing	machine	problems	and	solutions	pdf

Problem	of	determining	whether	a	given	program	will	finish	running	or	continue	forever	This	article	includes	a	list	of	general	references,	but	it	remains	largely	unverified	because	it	lacks	sufficient	corresponding	inline	citations.	Please	help	to	improve	this	article	by	introducing	more	precise	citations.	(September	2018)	(Learn	how	and	when	to	remove
this	template	message)	In	computability	theory,	the	halting	problem	is	the	problem	of	determining,	from	a	description	of	an	arbitrary	computer	program	and	an	input,	whether	the	program	will	finish	running,	or	continue	to	run	forever.	Alan	Turing	proved	in	1936	that	a	general	algorithm	to	solve	the	halting	problem	for	all	possible	program-input
pairs	cannot	exist.	For	any	program	f	that	might	determine	if	programs	halt,	a	"pathological"	program	g,	called	with	some	input,	can	pass	its	own	source	and	its	input	to	f	and	then	specifically	do	the	opposite	of	what	f	predicts	g	will	do.	No	f	can	exist	that	handles	this	case.	A	key	part	of	the	proof	is	a	mathematical	definition	of	a	computer	and	program,
which	is	known	as	a	Turing	machine;	the	halting	problem	is	undecidable	over	Turing	machines.	It	is	one	of	the	first	cases	of	decision	problems	proven	to	be	unsolvable.	This	proof	is	significant	to	practical	computing	efforts,	defining	a	class	of	applications	which	no	programming	invention	can	possibly	perform	perfectly.	Jack	Copeland	(2004)	attributes
the	introduction	of	the	term	halting	problem	to	the	work	of	Martin	Davis	in	the	1950s.[1]	Background	The	halting	problem	is	a	decision	problem	about	properties	of	computer	programs	on	a	fixed	Turing-complete	model	of	computation,	i.e.,	all	programs	that	can	be	written	in	some	given	programming	language	that	is	general	enough	to	be	equivalent
to	a	Turing	machine.	The	problem	is	to	determine,	given	a	program	and	an	input	to	the	program,	whether	the	program	will	eventually	halt	when	run	with	that	input.	In	this	abstract	framework,	there	are	no	resource	limitations	on	the	amount	of	memory	or	time	required	for	the	program's	execution;	it	can	take	arbitrarily	long	and	use	an	arbitrary
amount	of	storage	space	before	halting.	The	question	is	simply	whether	the	given	program	will	ever	halt	on	a	particular	input.	For	example,	in	pseudocode,	the	program	while	(true)	continue	does	not	halt;	rather,	it	goes	on	forever	in	an	infinite	loop.	On	the	other	hand,	the	program	print	"Hello,	world!"	does	halt.	While	deciding	whether	these
programs	halt	is	simple,	more	complex	programs	prove	problematic.	One	approach	to	the	problem	might	be	to	run	the	program	for	some	number	of	steps	and	check	if	it	halts.	But	if	the	program	does	not	halt,	it	is	unknown	whether	the	program	will	eventually	halt	or	run	forever.	Turing	proved	no	algorithm	exists	that	always	correctly	decides
whether,	for	a	given	arbitrary	program	and	input,	the	program	halts	when	run	with	that	input.	The	essence	of	Turing's	proof	is	that	any	such	algorithm	can	be	made	to	contradict	itself	and	therefore	cannot	be	correct.	Programming	consequences	Some	infinite	loops	can	be	quite	useful.	For	instance,	event	loops	are	typically	coded	as	infinite	loops.[2]
However,	most	subroutines	are	intended	to	finish	(halt).[3]	In	particular,	in	hard	real-time	computing,	programmers	attempt	to	write	subroutines	that	are	not	only	guaranteed	to	finish	(halt),	but	are	also	guaranteed	to	finish	before	a	given	deadline.[4]	Sometimes	these	programmers	use	some	general-purpose	(Turing-complete)	programming	language,
but	attempt	to	write	in	a	restricted	style—such	as	MISRA	C	or	SPARK—that	makes	it	easy	to	prove	that	the	resulting	subroutines	finish	before	the	given	deadline.[citation	needed]	Other	times	these	programmers	apply	the	rule	of	least	power—they	deliberately	use	a	computer	language	that	is	not	quite	fully	Turing-complete.	Frequently,	these	are
languages	that	guarantee	all	subroutines	finish,	such	as	Coq.[citation	needed]	Common	pitfalls	The	difficulty	in	the	halting	problem	lies	in	the	requirement	that	the	decision	procedure	must	work	for	all	programs	and	inputs.	A	particular	program	either	halts	on	a	given	input	or	does	not	halt.	Consider	one	algorithm	that	always	answers	"halts"	and
another	that	always	answers	"does	not	halt".	For	any	specific	program	and	input,	one	of	these	two	algorithms	answers	correctly,	even	though	nobody	may	know	which	one.	Yet	neither	algorithm	solves	the	halting	problem	generally.	There	are	programs	(interpreters)	that	simulate	the	execution	of	whatever	source	code	they	are	given.	Such	programs
can	demonstrate	that	a	program	does	halt	if	this	is	the	case:	the	interpreter	itself	will	eventually	halt	its	simulation,	which	shows	that	the	original	program	halted.	However,	an	interpreter	will	not	halt	if	its	input	program	does	not	halt,	so	this	approach	cannot	solve	the	halting	problem	as	stated;	it	does	not	successfully	answer	"does	not	halt"	for
programs	that	do	not	halt.	The	halting	problem	is	theoretically	decidable	for	linear	bounded	automata	(LBAs)	or	deterministic	machines	with	finite	memory.	A	machine	with	finite	memory	has	a	finite	number	of	configurations,	and	thus	any	deterministic	program	on	it	must	eventually	either	halt	or	repeat	a	previous	configuration:	...any	finite-state
machine,	if	left	completely	to	itself,	will	fall	eventually	into	a	perfectly	periodic	repetitive	pattern.	The	duration	of	this	repeating	pattern	cannot	exceed	the	number	of	internal	states	of	the	machine...	(italics	in	original,	Minsky	1967,	p.	24)	Minsky	notes,	however,	that	a	computer	with	a	million	small	parts,	each	with	two	states,	would	have	at	least
21,000,000	possible	states:	This	is	a	1	followed	by	about	three	hundred	thousand	zeroes	...	Even	if	such	a	machine	were	to	operate	at	the	frequencies	of	cosmic	rays,	the	aeons	of	galactic	evolution	would	be	as	nothing	compared	to	the	time	of	a	journey	through	such	a	cycle	(Minsky	1967	p.	25):	Minsky	states	that	although	a	machine	may	be	finite,	and
finite	automata	"have	a	number	of	theoretical	limitations":	...the	magnitudes	involved	should	lead	one	to	suspect	that	theorems	and	arguments	based	chiefly	on	the	mere	finiteness	[of]	the	state	diagram	may	not	carry	a	great	deal	of	significance.	(Minsky	p.	25)	It	can	also	be	decided	automatically	whether	a	nondeterministic	machine	with	finite
memory	halts	on	none,	some,	or	all	of	the	possible	sequences	of	nondeterministic	decisions,	by	enumerating	states	after	each	possible	decision.	History	Further	information:	Algorithm	§	History:	Development	of	the	notion	of	"algorithm"	This	section	is	in	list	format,	but	may	read	better	as	prose.	You	can	help	by	converting	this	section,	if	appropriate.
Editing	help	is	available.	(February	2020)	The	halting	problem	is	historically	important	because	it	was	one	of	the	first	problems	to	be	proved	undecidable.	(Turing's	proof	went	to	press	in	May	1936,	whereas	Alonzo	Church's	proof	of	the	undecidability	of	a	problem	in	the	lambda	calculus	had	already	been	published	in	April	1936	[Church,	1936].)
Subsequently,	many	other	undecidable	problems	have	been	described.	Timeline	1900:	David	Hilbert	poses	his	"23	questions"	(now	known	as	Hilbert's	problems)	at	the	Second	International	Congress	of	Mathematicians	in	Paris.	"Of	these,	the	second	was	that	of	proving	the	consistency	of	the	'Peano	axioms'	on	which,	as	he	had	shown,	the	rigour	of
mathematics	depended".	(Hodges	p.	83,	Davis'	commentary	in	Davis,	1965,	p.	108)	1920–1921:	Emil	Post	explores	the	halting	problem	for	tag	systems,	regarding	it	as	a	candidate	for	unsolvability.	(Absolutely	unsolvable	problems	and	relatively	undecidable	propositions	–	account	of	an	anticipation,	in	Davis,	1965,	pp.	340–433.)	Its	unsolvability	was	not
established	until	much	later,	by	Marvin	Minsky	(1967).	1928:	Hilbert	recasts	his	'Second	Problem'	at	the	Bologna	International	Congress.	(Reid	pp.	188–189)	Hodges	claims	he	posed	three	questions:	i.e.	#1:	Was	mathematics	complete?	#2:	Was	mathematics	consistent?	#3:	Was	mathematics	decidable?	(Hodges	p.	91).	The	third	question	is	known	as
the	Entscheidungsproblem	(Decision	Problem).	(Hodges	p.	91,	Penrose	p.	34)	1930:	Kurt	Gödel	announces	a	proof	as	an	answer	to	the	first	two	of	Hilbert's	1928	questions	[cf	Reid	p.	198].	"At	first	he	[Hilbert]	was	only	angry	and	frustrated,	but	then	he	began	to	try	to	deal	constructively	with	the	problem...	Gödel	himself	felt—and	expressed	the
thought	in	his	paper—that	his	work	did	not	contradict	Hilbert's	formalistic	point	of	view"	(Reid	p.	199)	1931:	Gödel	publishes	"On	Formally	Undecidable	Propositions	of	Principia	Mathematica	and	Related	Systems	I",	(reprinted	in	Davis,	1965,	p.	5ff)	19	April	1935:	Alonzo	Church	publishes	"An	Unsolvable	Problem	of	Elementary	Number	Theory",
wherein	he	identifies	what	it	means	for	a	function	to	be	effectively	calculable.	Such	a	function	will	have	an	algorithm,	and	"...the	fact	that	the	algorithm	has	terminated	becomes	effectively	known	..."	(Davis,	1965,	p.	100)	1936:	Church	publishes	the	first	proof	that	the	Entscheidungsproblem	is	unsolvable.	(A	Note	on	the	Entscheidungsproblem,
reprinted	in	Davis,	1965,	p.	110.)	7	October	1936:	Emil	Post's	paper	"Finite	Combinatory	Processes.	Formulation	I"	is	received.	Post	adds	to	his	"process"	an	instruction	"(C)	Stop".	He	called	such	a	process	"type	1	...	if	the	process	it	determines	terminates	for	each	specific	problem."	(Davis,	1965,	p.	289ff)	1937:	Alan	Turing's	paper	On	Computable
Numbers	With	an	Application	to	the	Entscheidungsproblem	reaches	print	in	January	1937	(reprinted	in	Davis,	1965,	p.	115).	Turing's	proof	departs	from	calculation	by	recursive	functions	and	introduces	the	notion	of	computation	by	machine.	Stephen	Kleene	(1952)	refers	to	this	as	one	of	the	"first	examples	of	decision	problems	proved	unsolvable".
1939:	J.	Barkley	Rosser	observes	the	essential	equivalence	of	"effective	method"	defined	by	Gödel,	Church,	and	Turing	(Rosser	in	Davis,	1965,	p.	223,	"Informal	Exposition	of	Proofs	of	Gödel's	Theorem	and	Church's	Theorem")	1943:	In	a	paper,	Stephen	Kleene	states	that	"In	setting	up	a	complete	algorithmic	theory,	what	we	do	is	describe	a	procedure
...	which	procedure	necessarily	terminates	and	in	such	manner	that	from	the	outcome	we	can	read	a	definite	answer,	'Yes'	or	'No,'	to	the	question,	'Is	the	predicate	value	true?'."	1952:	Kleene	(1952)	Chapter	XIII	("Computable	Functions")	includes	a	discussion	of	the	unsolvability	of	the	halting	problem	for	Turing	machines	and	reformulates	it	in	terms
of	machines	that	"eventually	stop",	i.e.	halt:	"...	there	is	no	algorithm	for	deciding	whether	any	given	machine,	when	started	from	any	given	situation,	eventually	stops."	(Kleene	(1952)	p.	382)	1952:	"Martin	Davis	thinks	it	likely	that	he	first	used	the	term	'halting	problem'	in	a	series	of	lectures	that	he	gave	at	the	Control	Systems	Laboratory	at	the
University	of	Illinois	in	1952	(letter	from	Davis	to	Copeland,	12	December	2001)."	(Footnote	61	in	Copeland	(2004)	pp.	40ff)	Formalization	In	his	original	proof	Turing	formalized	the	concept	of	algorithm	by	introducing	Turing	machines.	However,	the	result	is	in	no	way	specific	to	them;	it	applies	equally	to	any	other	model	of	computation	that	is
equivalent	in	its	computational	power	to	Turing	machines,	such	as	Markov	algorithms,	Lambda	calculus,	Post	systems,	register	machines,	or	tag	systems.	What	is	important	is	that	the	formalization	allows	a	straightforward	mapping	of	algorithms	to	some	data	type	that	the	algorithm	can	operate	upon.	For	example,	if	the	formalism	lets	algorithms
define	functions	over	strings	(such	as	Turing	machines)	then	there	should	be	a	mapping	of	these	algorithms	to	strings,	and	if	the	formalism	lets	algorithms	define	functions	over	natural	numbers	(such	as	computable	functions)	then	there	should	be	a	mapping	of	algorithms	to	natural	numbers.	The	mapping	to	strings	is	usually	the	most	straightforward,
but	strings	over	an	alphabet	with	n	characters	can	also	be	mapped	to	numbers	by	interpreting	them	as	numbers	in	an	n-ary	numeral	system.	Representation	as	a	set	Main	article:	Decision	problem	The	conventional	representation	of	decision	problems	is	the	set	of	objects	possessing	the	property	in	question.	The	halting	set	K	=	{(i,	x)	|	program	i	halts
when	run	on	input	x}	represents	the	halting	problem.	This	set	is	recursively	enumerable,	which	means	there	is	a	computable	function	that	lists	all	of	the	pairs	(i,	x)	it	contains.	However,	the	complement	of	this	set	is	not	recursively	enumerable.[5]	There	are	many	equivalent	formulations	of	the	halting	problem;	any	set	whose	Turing	degree	equals	that
of	the	halting	problem	is	such	a	formulation.	Examples	of	such	sets	include:	{i	|	program	i	eventually	halts	when	run	with	input	0}	{i	|	there	is	an	input	x	such	that	program	i	eventually	halts	when	run	with	input	x}.	Proof	concept	The	proof	that	the	halting	problem	is	not	solvable	is	a	proof	by	contradiction.	To	illustrate	the	concept	of	the	proof,
suppose	that	there	exists	a	total	computable	function	halts(f)	that	returns	true	if	the	subroutine	f	halts	(when	run	with	no	inputs)	and	returns	false	otherwise.	Now	consider	the	following	subroutine:	def	g():	if	halts(g):	loop_forever()	halts(g)	must	either	return	true	or	false,	because	halts	was	assumed	to	be	total.	If	halts(g)	returns	true,	then	g	will	call
loop_forever	and	never	halt,	which	is	a	contradiction.	If	halts(g)	returns	false,	then	g	will	halt,	because	it	will	not	call	loop_forever;	this	is	also	a	contradiction.	Overall,	halts(g)	can	not	return	a	truth	value	that	is	consistent	with	whether	g	halts.	Therefore,	the	initial	assumption	that	halts	is	a	total	computable	function	must	be	false.	The	method	used	in
the	proof	is	called	diagonalization	-	g	does	the	opposite	of	what	halts	says	g	should	do.	The	difference	between	this	sketch	and	the	actual	proof	is	that	in	the	actual	proof,	the	computable	function	halts	does	not	directly	take	a	subroutine	as	an	argument;	instead	it	takes	the	source	code	of	a	program.	The	actual	proof	requires	additional	work	to	handle
this	issue.	Moreover,	the	actual	proof	avoids	the	direct	use	of	recursion	shown	in	the	definition	of	g.	Sketch	of	proof	The	concept	above	shows	the	general	method	of	the	proof;	this	section	will	present	additional	details.	The	overall	goal	is	to	show	that	there	is	no	total	computable	function	that	decides	whether	an	arbitrary	program	i	halts	on	arbitrary
input	x;	that	is,	the	following	function	h	is	not	computable	(Penrose	1990,	p.	57–63):	h	(i	,	x)	=	{	1	if			program		i		halts	on	input		x	,	0	otherwise.	{\displaystyle	h(i,x)={\begin{cases}1&{\text{if	}}{\text{	program	}}i{\text{	halts	on	input	}}x,\\0&{\text{otherwise.}}\end{cases}}}	Here	program	i	refers	to	the	i	th	program	in	an	enumeration	of	all	the
programs	of	a	fixed	Turing-complete	model	of	computation.	f(i,j)	i	1	2	3	4	5	6	j	1	1	0	0	1	0	1	2	0	0	0	1	0	0	3	0	1	0	1	0	1	4	1	0	0	1	0	0	5	0	0	0	1	1	1	6	1	1	0	0	1	0	f(i,i)	1	0	0	1	1	0	g(i)	U	0	0	U	U	0	Possible	values	for	a	total	computable	function	f	arranged	in	a	2D	array.	The	orange	cells	are	the	diagonal.	The	values	of	f(i,i)	and	g(i)	are	shown	at	the	bottom;	U
indicates	that	the	function	g	is	undefined	for	a	particular	input	value.	The	proof	proceeds	by	directly	establishing	that	no	total	computable	function	with	two	arguments	can	be	the	required	function	h.	As	in	the	sketch	of	the	concept,	given	any	total	computable	binary	function	f,	the	following	partial	function	g	is	also	computable	by	some	program	e:	g	(i
)	=	{	0	if		f	(i	,	i)	=	0	,	undefined	otherwise.	{\displaystyle	g(i)={\begin{cases}0&{\text{if	}}f(i,i)=0,\\{\text{undefined}}&{\text{otherwise.}}\end{cases}}}	The	verification	that	g	is	computable	relies	on	the	following	constructs	(or	their	equivalents):	computable	subprograms	(the	program	that	computes	f	is	a	subprogram	in	program	e),	duplication
of	values	(program	e	computes	the	inputs	i,i	for	f	from	the	input	i	for	g),	conditional	branching	(program	e	selects	between	two	results	depending	on	the	value	it	computes	for	f(i,i)),	not	producing	a	defined	result	(for	example,	by	looping	forever),	returning	a	value	of	0.	The	following	pseudocode	illustrates	a	straightforward	way	to	compute	g:
procedure	compute_g(i):	if	f(i,	i)	==	0	then	return	0	else	loop	forever	Because	g	is	partial	computable,	there	must	be	a	program	e	that	computes	g,	by	the	assumption	that	the	model	of	computation	is	Turing-complete.	This	program	is	one	of	all	the	programs	on	which	the	halting	function	h	is	defined.	The	next	step	of	the	proof	shows	that	h(e,e)	will	not
have	the	same	value	as	f(e,e).	It	follows	from	the	definition	of	g	that	exactly	one	of	the	following	two	cases	must	hold:	f(e,e)	=	0	and	so	g(e)	=	0.	In	this	case	h(e,e)	=	1,	because	program	e	halts	on	input	e.	f(e,e)	≠	0	and	so	g(e)	is	undefined.	In	this	case	h(e,e)	=	0,	because	program	e	does	not	halt	on	input	e.	In	either	case,	f	cannot	be	the	same	function
as	h.	Because	f	was	an	arbitrary	total	computable	function	with	two	arguments,	all	such	functions	must	differ	from	h.	This	proof	is	analogous	to	Cantor's	diagonal	argument.	One	may	visualize	a	two-dimensional	array	with	one	column	and	one	row	for	each	natural	number,	as	indicated	in	the	table	above.	The	value	of	f(i,j)	is	placed	at	column	i,	row	j.
Because	f	is	assumed	to	be	a	total	computable	function,	any	element	of	the	array	can	be	calculated	using	f.	The	construction	of	the	function	g	can	be	visualized	using	the	main	diagonal	of	this	array.	If	the	array	has	a	0	at	position	(i,i),	then	g(i)	is	0.	Otherwise,	g(i)	is	undefined.	The	contradiction	comes	from	the	fact	that	there	is	some	column	e	of	the
array	corresponding	to	g	itself.	Now	assume	f	was	the	halting	function	h,	if	g(e)	is	defined	(g(e)	=	0	in	this	case),	g(e)	halts	so	f(e,e)	=	1.	But	g(e)	=	0	only	when	f(e,e)	=	0,	contradicting	f(e,e)	=	1.	Similarly,	if	g(e)	is	not	defined,	then	halting	function	f(e,e)	=	0,	which	leads	to	g(e)	=	0	under	g's	construction.	This	contradicts	the	assumption	of	g(e)	not
being	defined.	In	both	cases	contradiction	arises.	Therefore	any	arbitrary	computable	function	f	cannot	be	the	halting	function	h.	Computability	theory	Main	article:	Computability	theory	The	typical	method	of	proving	a	problem	to	be	undecidable	is	with	the	technique	of	reduction[clarification	needed].	To	do	this,	it	is	sufficient	to	show	that	if	a
solution	to	the	new	problem	were	found,	it	could	be	used	to	decide	an	undecidable	problem	by	transforming	instances	of	the	undecidable	problem	into	instances	of	the	new	problem.	Since	we	already	know	that	no	method	can	decide	the	old	problem,	no	method	can	decide	the	new	problem	either.	Often	the	new	problem	is	reduced	to	solving	the
halting	problem.	(The	same	technique	is	used	to	demonstrate	that	a	problem	is	NP	complete,	only	in	this	case,	rather	than	demonstrating	that	there	is	no	solution,	it	demonstrates	there	is	no	polynomial	time	solution,	assuming	P	≠	NP.)	For	example,	one	such	consequence	of	the	halting	problem's	undecidability	is	that	there	cannot	be	a	general
algorithm	that	decides	whether	a	given	statement	about	natural	numbers	is	true	or	false.	The	reason	for	this	is	that	the	proposition	stating	that	a	certain	program	will	halt	given	a	certain	input	can	be	converted	into	an	equivalent	statement	about	natural	numbers.	If	we	had	an	algorithm	that	could	find	the	truth	value	of	every	statement	about	natural
numbers,	it	could	certainly	find	the	truth	value	of	this	one;	but	that	would	determine	whether	the	original	program	halts,	which	is	impossible,	since	the	halting	problem	is	undecidable.	Rice's	theorem	generalizes	the	theorem	that	the	halting	problem	is	unsolvable.	It	states	that	for	any	non-trivial	property,	there	is	no	general	decision	procedure	that,
for	all	programs,	decides	whether	the	partial	function	implemented	by	the	input	program	has	that	property.	(A	partial	function	is	a	function	which	may	not	always	produce	a	result,	and	so	is	used	to	model	programs,	which	can	either	produce	results	or	fail	to	halt.)	For	example,	the	property	"halt	for	the	input	0"	is	undecidable.	Here,	"non-trivial"
means	that	the	set	of	partial	functions	that	satisfy	the	property	is	neither	the	empty	set	nor	the	set	of	all	partial	functions.	For	example,	"halts	or	fails	to	halt	on	input	0"	is	clearly	true	of	all	partial	functions,	so	it	is	a	trivial	property,	and	can	be	decided	by	an	algorithm	that	simply	reports	"true."	Also,	this	theorem	holds	only	for	properties	of	the	partial
function	implemented	by	the	program;	Rice's	Theorem	does	not	apply	to	properties	of	the	program	itself.	For	example,	"halt	on	input	0	within	100	steps"	is	not	a	property	of	the	partial	function	that	is	implemented	by	the	program—it	is	a	property	of	the	program	implementing	the	partial	function	and	is	very	much	decidable.	Gregory	Chaitin	has
defined	a	halting	probability,	represented	by	the	symbol	Ω,	a	type	of	real	number	that	informally	is	said	to	represent	the	probability	that	a	randomly	produced	program	halts.	These	numbers	have	the	same	Turing	degree	as	the	halting	problem.	It	is	a	normal	and	transcendental	number	which	can	be	defined	but	cannot	be	completely	computed.	This
means	one	can	prove	that	there	is	no	algorithm	which	produces	the	digits	of	Ω,	although	its	first	few	digits	can	be	calculated	in	simple	cases.	While	Turing's	proof	shows	that	there	can	be	no	general	method	or	algorithm	to	determine	whether	algorithms	halt,	individual	instances	of	that	problem	may	very	well	be	susceptible	to	attack.	Given	a	specific
algorithm,	one	can	often	show	that	it	must	halt	for	any	input,	and	in	fact	computer	scientists	often	do	just	that	as	part	of	a	correctness	proof.	But	each	proof	has	to	be	developed	specifically	for	the	algorithm	at	hand;	there	is	no	mechanical,	general	way	to	determine	whether	algorithms	on	a	Turing	machine	halt.	However,	there	are	some	heuristics	that
can	be	used	in	an	automated	fashion	to	attempt	to	construct	a	proof,	which	succeed	frequently	on	typical	programs.	This	field	of	research	is	known	as	automated	termination	analysis.	Since	the	negative	answer	to	the	halting	problem	shows	that	there	are	problems	that	cannot	be	solved	by	a	Turing	machine,	the	Church–Turing	thesis	limits	what	can	be
accomplished	by	any	machine	that	implements	effective	methods.	However,	not	all	machines	conceivable	to	human	imagination	are	subject	to	the	Church–Turing	thesis	(e.g.	oracle	machines).	It	is	an	open	question	whether	there	can	be	actual	deterministic	physical	processes	that,	in	the	long	run,	elude	simulation	by	a	Turing	machine,	and	in
particular	whether	any	such	hypothetical	process	could	usefully	be	harnessed	in	the	form	of	a	calculating	machine	(a	hypercomputer)	that	could	solve	the	halting	problem	for	a	Turing	machine	amongst	other	things.	It	is	also	an	open	question	whether	any	such	unknown	physical	processes	are	involved	in	the	working	of	the	human	brain,	and	whether
humans	can	solve	the	halting	problem	(Copeland	2004,	p.	15).	Gödel's	incompleteness	theorems	This	section	does	not	cite	any	sources.	Please	help	improve	this	section	by	adding	citations	to	reliable	sources.	Unsourced	material	may	be	challenged	and	removed.	(August	2019)	(Learn	how	and	when	to	remove	this	template	message)	The	concepts
raised	by	Gödel's	incompleteness	theorems	are	very	similar	to	those	raised	by	the	halting	problem,	and	the	proofs	are	quite	similar.	In	fact,	a	weaker	form	of	the	First	Incompleteness	Theorem	is	an	easy	consequence	of	the	undecidability	of	the	halting	problem.	This	weaker	form	differs	from	the	standard	statement	of	the	incompleteness	theorem	by
asserting	that	an	axiomatization	of	the	natural	numbers	that	is	both	complete	and	sound	is	impossible.	The	"sound"	part	is	the	weakening:	it	means	that	we	require	the	axiomatic	system	in	question	to	prove	only	true	statements	about	natural	numbers.	Since	soundness	implies	consistency,	this	weaker	form	can	be	seen	as	a	corollary	of	the	strong	form.
It	is	important	to	observe	that	the	statement	of	the	standard	form	of	Gödel's	First	Incompleteness	Theorem	is	completely	unconcerned	with	the	truth	value	of	a	statement,	but	only	concerns	the	issue	of	whether	it	is	possible	to	find	it	through	a	mathematical	proof.	The	weaker	form	of	the	theorem	can	be	proved	from	the	undecidability	of	the	halting
problem	as	follows.	Assume	that	we	have	a	sound	(and	hence	consistent)	and	complete	axiomatization	of	all	true	first-order	logic	statements	about	natural	numbers.	Then	we	can	build	an	algorithm	that	enumerates	all	these	statements.	This	means	that	there	is	an	algorithm	N(n)	that,	given	a	natural	number	n,	computes	a	true	first-order	logic
statement	about	natural	numbers,	and	that	for	all	true	statements,	there	is	at	least	one	n	such	that	N(n)	yields	that	statement.	Now	suppose	we	want	to	decide	if	the	algorithm	with	representation	a	halts	on	input	i.	We	know	that	this	statement	can	be	expressed	with	a	first-order	logic	statement,	say	H(a,	i).	Since	the	axiomatization	is	complete	it
follows	that	either	there	is	an	n	such	that	N(n)	=	H(a,	i)	or	there	is	an	n'	such	that	N(n')	=	¬	H(a,	i).	So	if	we	iterate	over	all	n	until	we	either	find	H(a,	i)	or	its	negation,	we	will	always	halt,	and	furthermore,	the	answer	it	gives	us	will	be	true	(by	soundness).	This	means	that	this	gives	us	an	algorithm	to	decide	the	halting	problem.	Since	we	know	that
there	cannot	be	such	an	algorithm,	it	follows	that	the	assumption	that	there	is	a	consistent	and	complete	axiomatization	of	all	true	first-order	logic	statements	about	natural	numbers	must	be	false.	Generalization	Many	variants	of	the	halting	problem	can	be	found	in	computability	textbooks	(e.g.,	Sipser	2006,	Davis	1958,	Minsky	1967,	Hopcroft	and
Ullman	1979,	Börger	1989).	Typically	their	undecidability	follows	by	reduction	from	the	standard	halting	problem.	However,	some	of	them	have	a	higher	degree	of	unsolvability.	The	next	two	examples	are	typical.	Halting	on	all	inputs	The	universal	halting	problem,	also	known	(in	recursion	theory)	as	totality,	is	the	problem	of	determining,	whether	a
given	computer	program	will	halt	for	every	input	(the	name	totality	comes	from	the	equivalent	question	of	whether	the	computed	function	is	total).	This	problem	is	not	only	undecidable,	as	the	halting	problem,	but	highly	undecidable.	In	terms	of	the	arithmetical	hierarchy,	it	is	Π	2	0	{\displaystyle	\Pi	_{2}^{0}}	-complete	(Börger	1989,	p.	121).	This
means,	in	particular,	that	it	cannot	be	decided	even	with	an	oracle	for	the	halting	problem.	Recognizing	partial	solutions	There	are	many	programs	that,	for	some	inputs,	return	a	correct	answer	to	the	halting	problem,	while	for	other	inputs	they	do	not	return	an	answer	at	all.	However	the	problem	"given	program	p,	is	it	a	partial	halting	solver"	(in	the
sense	described)	is	at	least	as	hard	as	the	halting	problem.	To	see	this,	assume	that	there	is	an	algorithm	PHSR	("partial	halting	solver	recognizer")	to	do	that.	Then	it	can	be	used	to	solve	the	halting	problem,	as	follows:	To	test	whether	input	program	x	halts	on	y,	construct	a	program	p	that	on	input	(x,y)	reports	true	and	diverges	on	all	other	inputs.
Then	test	p	with	PHSR.	The	above	argument	is	a	reduction	of	the	halting	problem	to	PHS	recognition,	and	in	the	same	manner,	harder	problems	such	as	halting	on	all	inputs	can	also	be	reduced,	implying	that	PHS	recognition	is	not	only	undecidable,	but	higher	in	the	arithmetical	hierarchy,	specifically	Π	2	0	{\displaystyle	\Pi	_{2}^{0}}	-complete.
Lossy	computation	A	lossy	Turing	machine	is	a	Turing	machine	in	which	part	of	the	tape	may	non-deterministically	disappear.	The	Halting	problem	is	decidable	for	lossy	Turing	machine	but	non-primitive	recursive.[6]:92	Oracle	machines	See	also:	Turing	jump	A	machine	with	an	oracle	for	the	halting	problem	can	determine	whether	particular	Turing
machines	will	halt	on	particular	inputs,	but	they	cannot	determine,	in	general,	if	machines	equivalent	to	themselves	will	halt.	See	also	Busy	beaver	Gödel's	incompleteness	theorem	Brouwer-Hilbert	controversy	Kolmogorov	complexity	P	versus	NP	problem	Termination	analysis	Worst-case	execution	time	Notes	^	In	none	of	his	work	did	Turing	use	the
word	"halting"	or	"termination".	Turing's	biographer	Hodges	does	not	have	the	word	"halting"	or	words	"halting	problem"	in	his	index.	The	earliest	known	use	of	the	words	"halting	problem"	is	in	a	proof	by	Davis	(1958,	p.	70–71):	"Theorem	2.2	There	exists	a	Turing	machine	whose	halting	problem	is	recursively	unsolvable.	"A	related	problem	is	the
printing	problem	for	a	simple	Turing	machine	Z	with	respect	to	a	symbol	Si".	Davis	adds	no	attribution	for	his	proof,	so	one	infers	that	it	is	original	with	him.	But	Davis	has	pointed	out	that	a	statement	of	the	proof	exists	informally	in	Kleene	(1952,	p.	382).	Copeland	(2004,	p	40)	states	that:	"The	halting	problem	was	so	named	(and	it	appears,	first
stated)	by	Martin	Davis	[cf.	Copeland	footnote	61]...	(It	is	often	said	that	Turing	stated	and	proved	the	halting	theorem	in	'On	Computable	Numbers',	but	strictly	this	is	not	true)."	^	McConnell,	Steve	(2004),	Code	Complete	(2nd	ed.),	Pearson	Education,	p.	374,	ISBN	9780735636972	^	Han-Way	Huang.	"The	HCS12	/	9S12:	An	Introduction	to	Software
and	Hardware	Interfacing".	p.	197.	quote:	"...	if	the	program	gets	stuck	in	a	certain	loop,	...	figure	out	what's	wrong."	^	David	E.	Simon.	"An	Embedded	Software	Primer".	1999.	p.	253.	quote:	"For	hard	real-time	systems,	therefore,	it	is	important	to	write	subroutines	that	always	execute	in	the	same	amount	of	time	or	that	have	a	clearly	identifiable
worst	case."	^	Moore,	Cristopher;	Mertens,	Stephan	(2011).	The	Nature	of	Computation.	Oxford	University	Press.	pp.	236–237.	doi:10.1093/acprof:oso/9780199233212.001.0001.	ISBN	978-0-19-923321-2.	^	Abdulla,	Parosh	Aziz;	Jonsson,	Bengt	(1996).	"Verifying	Programs	with	Unreliable	Channels".	Information	and	Computation.	127	(2):	91–101.
doi:10.1006/inco.1996.0053.	References	Turing,	A.	M.	(1937).	"On	Computable	Numbers,	with	an	Application	to	the	Entscheidungsproblem".	Proceedings	of	the	London	Mathematical	Society.	Wiley.	s2-42	(1):	230–265.	doi:10.1112/plms/s2-42.1.230.	ISSN	0024-6115.,	Turing,	A.	M.	(1938).	"On	Computable	Numbers,	with	an	Application	to	the
Entscheidungsproblem.	A	Correction".	Proceedings	of	the	London	Mathematical	Society.	Wiley.	s2-43	(1):	544–546.	doi:10.1112/plms/s2-43.6.544.	ISSN	0024-6115.	This	is	the	epochal	paper	where	Turing	defines	Turing	machines,	formulates	the	halting	problem,	and	shows	that	it	(as	well	as	the	Entscheidungsproblem)	is	unsolvable.	Sipser,	Michael
(2006).	"Section	4.2:	The	Halting	Problem".	Introduction	to	the	Theory	of	Computation	(Second	ed.).	PWS	Publishing.	pp.	173–182.	ISBN	0-534-94728-X.	c2:HaltingProblem	Church,	Alonzo	(1936).	"An	Unsolvable	Problem	of	Elementary	Number	Theory".	American	Journal	of	Mathematics.	58	(2):	345–363.	doi:10.2307/2371045.	JSTOR	2371045.	B.	Jack
Copeland	ed.	(2004),	The	Essential	Turing:	Seminal	Writings	in	Computing,	Logic,	Philosophy,	Artificial	Intelligence,	and	Artificial	Life	plus	The	Secrets	of	Enigma,	Clarendon	Press	(Oxford	University	Press),	Oxford	UK,	ISBN	0-19-825079-7.	Davis,	Martin	(1965).	The	Undecidable,	Basic	Papers	on	Undecidable	Propositions,	Unsolvable	Problems	And
Computable	Functions.	New	York:	Raven	Press..	Turing's	paper	is	#3	in	this	volume.	Papers	include	those	by	Godel,	Church,	Rosser,	Kleene,	and	Post.	Davis,	Martin	(1958).	Computability	and	Unsolvability.	New	York:	McGraw-Hill..	Alfred	North	Whitehead	and	Bertrand	Russell,	Principia	Mathematica	to	*56,	Cambridge	at	the	University	Press,	1962.
Re:	the	problem	of	paradoxes,	the	authors	discuss	the	problem	of	a	set	not	be	an	object	in	any	of	its	"determining	functions",	in	particular	"Introduction,	Chap.	1	p.	24	"...difficulties	which	arise	in	formal	logic",	and	Chap.	2.I.	"The	Vicious-Circle	Principle"	p.	37ff,	and	Chap.	2.VIII.	"The	Contradictions"	p.	60ff.	Martin	Davis,	"What	is	a	computation",	in
Mathematics	Today,	Lynn	Arthur	Steen,	Vintage	Books	(Random	House),	1980.	A	wonderful	little	paper,	perhaps	the	best	ever	written	about	Turing	Machines	for	the	non-specialist.	Davis	reduces	the	Turing	Machine	to	a	far-simpler	model	based	on	Post's	model	of	a	computation.	Discusses	Chaitin	proof.	Includes	little	biographies	of	Emil	Post,	Julia
Robinson.	Marvin	Minsky,	Computation:	Finite	and	Infinite	Machines,	Prentice-Hall,	Inc.,	N.J.,	1967.	See	chapter	8,	Section	8.2	"Unsolvability	of	the	Halting	Problem."	Roger	Penrose,	The	Emperor's	New	Mind:	Concerning	computers,	Minds	and	the	Laws	of	Physics,	Oxford	University	Press,	Oxford	England,	1990	(with	corrections).	Cf.	Chapter	2,
"Algorithms	and	Turing	Machines".	An	over-complicated	presentation	(see	Davis's	paper	for	a	better	model),	but	a	thorough	presentation	of	Turing	machines	and	the	halting	problem,	and	Church's	Lambda	Calculus.	John	Hopcroft	and	Jeffrey	Ullman,	Introduction	to	Automata	Theory,	Languages	and	Computation,	Addison-Wesley,	Reading	Mass,	1979.
See	Chapter	7	"Turing	Machines."	A	book	centered	around	the	machine-interpretation	of	"languages",	NP-Completeness,	etc.	Andrew	Hodges,	Alan	Turing:	The	Enigma,	Simon	and	Schuster,	New	York.	Cf.	Chapter	"The	Spirit	of	Truth"	for	a	history	leading	to,	and	a	discussion	of,	his	proof.	Constance	Reid,	Hilbert,	Copernicus:	Springer-Verlag,	New
York,	1996	(first	published	1970).	Fascinating	history	of	German	mathematics	and	physics	from	1880s	through	1930s.	Hundreds	of	names	familiar	to	mathematicians,	physicists	and	engineers	appear	in	its	pages.	Perhaps	marred	by	no	overt	references	and	few	footnotes:	Reid	states	her	sources	were	numerous	interviews	with	those	who	personally
knew	Hilbert,	and	Hilbert's	letters	and	papers.	Edward	Beltrami,	What	is	Random?	Chance	and	order	in	mathematics	and	life,	Copernicus:	Springer-Verlag,	New	York,	1999.	Nice,	gentle	read	for	the	mathematically	inclined	non-specialist,	puts	tougher	stuff	at	the	end.	Has	a	Turing-machine	model	in	it.	Discusses	the	Chaitin	contributions.	Moore,
Cristopher;	Mertens,	Stephan	(2011),	The	Nature	of	Computation,	Oxford	University	Press,	ISBN	9780191620805	Ernest	Nagel	and	James	R.	Newman,	Godel’s	Proof,	New	York	University	Press,	1958.	Wonderful	writing	about	a	very	difficult	subject.	For	the	mathematically	inclined	non-specialist.	Discusses	Gentzen's	proof	on	pages	96–97	and
footnotes.	Appendices	discuss	the	Peano	Axioms	briefly,	gently	introduce	readers	to	formal	logic.	Taylor	Booth,	Sequential	Machines	and	Automata	Theory,	Wiley,	New	York,	1967.	Cf.	Chapter	9,	Turing	Machines.	Difficult	book,	meant	for	electrical	engineers	and	technical	specialists.	Discusses	recursion,	partial-recursion	with	reference	to	Turing
Machines,	halting	problem.	Has	a	Turing	Machine	model	in	it.	References	at	end	of	Chapter	9	catch	most	of	the	older	books	(i.e.	1952	until	1967	including	authors	Martin	Davis,	F.	C.	Hennie,	H.	Hermes,	S.	C.	Kleene,	M.	Minsky,	T.	Rado)	and	various	technical	papers.	See	note	under	Busy-Beaver	Programs.	Busy	Beaver	Programs	are	described	in
Scientific	American,	August	1984,	also	March	1985	p.	23.	A	reference	in	Booth	attributes	them	to	Rado,	T.(1962),	On	non-computable	functions,	Bell	Systems	Tech.	J.	41.	Booth	also	defines	Rado's	Busy	Beaver	Problem	in	problems	3,	4,	5,	6	of	Chapter	9,	p.	396.	David	Bolter,	Turing’s	Man:	Western	Culture	in	the	Computer	Age,	The	University	of	North
Carolina	Press,	Chapel	Hill,	1984.	For	the	general	reader.	May	be	dated.	Has	yet	another	(very	simple)	Turing	Machine	model	in	it.	Egon	Börger.	"Computability,	Complexity,	Logic".	North-Holland,	1989.	Stephen	Kleene,	Introduction	to	Metamathematics,	North-Holland,	1952.	Chapter	XIII	("Computable	Functions")	includes	a	discussion	of	the
unsolvability	of	the	halting	problem	for	Turing	machines.	In	a	departure	from	Turing's	terminology	of	circle-free	nonhalting	machines,	Kleene	refers	instead	to	machines	that	"stop",	i.e.	halt.	Sven	Köhler,	Christian	Schindelhauer,	Martin	Ziegler,	On	approximating	real-world	halting	problems,	pp.454-466	(2005)	ISBN	3540281932	Springer	Lecture
Notes	in	Computer	Science	volume	3623:	Undecidability	of	the	Halting	Problem	means	that	not	all	instances	can	be	answered	correctly;	but	maybe	"some",	"many"	or	"most"	can?	On	the	one	hand	the	constant	answer	"yes"	will	be	correct	infinitely	often,	and	wrong	also	infinitely	often.	To	make	the	question	reasonable,	consider	the	density	of	the
instances	that	can	be	solved.	This	turns	out	to	depend	significantly	on	the	Programming	System	under	consideration.	Logical	Limitations	to	Machine	Ethics,	with	Consequences	to	Lethal	Autonomous	Weapons	-	paper	discussed	in:	Does	the	Halting	Problem	Mean	No	Moral	Robots?	Nicholas	J.	Daras	and	Themistocles	M.	Rassias,	Modern	Discrete
Mathematics	and	Analysis:	with	Applications	in	Cryptography,	Information	Systems	and	Modeling	Springer,	2018.	ISBN	978-3319743240.	Chapter	3	Section	1	contains	a	quality	description	of	the	halting	problem,	a	proof	by	contradiction,	and	a	helpful	graphic	representation	of	the	Halting	Problem.	External	links	Scooping	the	loop	snooper	-	a	poetic
proof	of	undecidability	of	the	halting	problem	animated	movie	-	an	animation	explaining	the	proof	of	the	undecidability	of	the	halting	problem	A	2-Minute	Proof	of	the	2nd-Most	Important	Theorem	of	the	2nd	Millennium	-	a	proof	in	only	13	lines	Retrieved	from	"

maid	for	home	
9598936372.pdf	
data	structures	and	algorithms	using	python	book	pdf	
epidemiologia	veterinaria	libro	pdf	
81789425655.pdf	
31708576536.pdf	
i	wear	a	cami	under	everything	
how	to	hook	printer	to	ipad	
99519649217.pdf	
caracteristicas	de	acariformes	
160c5db888942c---fujevedefog.pdf	
right	sided	mca	stroke	
gta	5	download	for	android	obb	apk	
88647786611.pdf	
tybcom	financial	accounting	mcq	pdf	sem	5	
telefokuzidupewalefoxiz.pdf	
1607d3d18e84b4---22406315812.pdf	
download	bongo	flava	za	zamani	mp3	
paisabazaar	credit	score	free	
95285292432.pdf	
kigaxi.pdf	
34054993958.pdf	
the	sears	tower	in	chicago	is	443	m	tall	
life	and	death	twilight	reimagined	pdf	online	
summary	of	the	two	brothers	egyptian	story	
74935810235.pdf	

http://eshop-kocicinadeje.cz/files/file/wowuxamodej.pdf
https://bluebeakbranding.com/wp-content/plugins/super-forms/uploads/php/files/e49755a36f4a4200d64ddd6f9d9f7346/9598936372.pdf
https://marciasmithconsulting.com/wp-content/plugins/super-forms/uploads/php/files/2a844b6eb5733fe4b65306e43d781ea5/88375219191.pdf
https://www.tonygssoulfood.com/wp-content/plugins/super-forms/uploads/php/files/805f57de52072e1cbfd37273af85037f/telunasudoxetip.pdf
http://sosonomo.com/ckfinder/userfiles/files/81789425655.pdf
http://cbelmira.com/wp-content/plugins/super-forms/uploads/php/files/64a69560e5b46c1913b7a53596a82409/31708576536.pdf
https://stopserv.ru/files/file/72768118912.pdf
https://www.hdontheroadnapoli.it/wp-content/plugins/formcraft/file-upload/server/content/files/160f2362610c1c---93947974316.pdf
https://aftaplan.com/works/peepsparty/html/upload_files/file/99519649217.pdf
http://geredekombiservisi.com/userfiles/file/mitewiravufebejefo.pdf
http://www.goataxiservice.com/wp-content/plugins/formcraft/file-upload/server/content/files/160c5db888942c---fujevedefog.pdf
https://harpethvalleypto.org/wp-content/plugins/super-forms/uploads/php/files/6724d05ee1ec3848f246bef9f52c6211/32944292922.pdf
http://xn--42-6kcdlkbomh7beggito5p.xn--p1ai/userfiles/file/vexexejodapife.pdf
http://lycee-elm.org/userfiles/file/88647786611.pdf
http://www.johnknox.ch/wp-content/plugins/formcraft/file-upload/server/content/files/160a633f1d6aff---35681462200.pdf
http://hosteleriayvending.com//ckfinder/userfiles/files/telefokuzidupewalefoxiz.pdf
https://www.auditek.fr/wp-content/plugins/formcraft/file-upload/server/content/files/1607d3d18e84b4---22406315812.pdf
https://ktmcollege.org/public_html/userfiles/file/janonuno.pdf
http://aiswaryamatrimonials.com/fck_uploads/file/bevitefawutejubotuzoxag.pdf
https://nhadatonline24h.com/Images_upload/files/95285292432.pdf
https://patriot.ch/wp-content/plugins/super-forms/uploads/php/files/ek4cjvdh12ht9442o11nu3kdkn/kigaxi.pdf
https://iamtimeshare.com/userfiles/file/34054993958.pdf
https://beaumont-residence.com/wp-content/plugins/super-forms/uploads/php/files/licpp7b2nq5ni2rb0nor97qmlo/pasopiji.pdf
http://www.lavalledesign.com/wp-content/plugins/formcraft/file-upload/server/content/files/160c14d3e90ed8---jiwedepekonomumemi.pdf
http://www.hcibatiment.fr/wp-content/plugins/formcraft/file-upload/server/content/files/1608129dfc0975---16251652078.pdf
http://flexa.cz/docs/file/74935810235.pdf

